Researchers Exploring Feasibility of Anti-Global Warming Atmospheric Spraying Program

A program to decrease Earth’s heat capture by injecting aerosols into the atmosphere from high-altitude aircraft is doable, but excessively expensive with present-day technology, and would be unlikely to stay a secret.

Those are the main findings of a new study reported recently in Environmental Research Letters, which examined the capabilities and expenses of various techniques of delivering sulfates into the lower stratosphere, called stratospheric aerosol injection (SAI).

The scientists scrutinized the practicalities and costs of a massive, hypothetical ‘solar geoengineering’ project commencing 15 years from now. Its goal would be to halve the increase in anthropogenic radiative forcing, by deploying material to altitudes of about 20 km.

They also deliberated whether such an idealized program could be maintained as a secret.

Dr Gernot Wagner, from Harvard University’s John A. Paulson School of Engineering and Applied Sciences, is a co-author of the study. He said: “Solar geoengineering is often described as ‘fast, cheap, and imperfect’.

While we don’t make any judgement about the desirability of SAI, we do show that a hypothetical deployment program starting 15 years from now, while both highly uncertain and ambitious, would be technically possible strictly from an engineering perspective. It would also be remarkably inexpensive, at an average of around $2 to 2.5 billion per year over the first 15 years.”

The scientists confirm previous studies that talk about the low direct costs of probable stratospheric aerosol geoengineering intervention, but they reach those numbers with the help of direct input from aerospace engineering companies in specifying what the paper nicknames the ‘SAI Lofter (SAIL)’.

Wake Smith, a co-author of the study, is a lecturer at Yale College and held former positions as CEO of Pemco World Air Services (a leading aircraft modification company), COO of Atlas Air Worldwide Holdings (a global cargo airline), and President of the flight training division of Boeing. He said: “I became intrigued by the engineering questions around SAI and the many studies that purport to show that modified existing planes could do the job. Turns out that is not so. It would indeed take an entirely new plane design to do SAI under reasonable albeit entirely hypothetical parameters. No existing aircraft has the combination of altitude and payload capabilities required.”

Mr. Smith said: “We developed the specifications for SAIL with direct input from several aerospace and engine companies. It’s equivalent in weight to a large narrow body passenger aircraft. But to sustain level flight at 20 km, it needs roughly double the wing area of an equivalently sized airliner, and double the thrust, with four engines instead of two.

“At the same time, its fuselage would be stubby and narrow, sized to accommodate a heavy but dense mass of molten sulphur rather than the large volume of space and air required for passengers.”

The team projected the total development costs at less than $2 billion for the airframe, and a further $350 million for adjusting current low-bypass engines.

The new planes would consist of a fleet of eight in the initial year, rising to a fleet of just under 100 within 15 years. The fleet would fly just over 4,000 missions per year in year one, rising to just over 60,000 per year by year 15.

Given the potential benefits of halving average projected increases in radiative forcing from a particular date onward, these numbers invoke the ‘incredible economics’ of solar geoengineering. Dozens of countries could fund such a program, and the required technology is not particularly exotic.

Dr Gernot Wagner, Study Co-Author, Harvard University’s John A. Paulson School of Engineering and Applied Sciences

However, in the authors’ opinion, this should not fortify the frequently-invoked fear that a rogue country or operator might launch a covert SAI program upon an unwary world.

No global SAI program of the scale and nature discussed here could reasonably expect to maintain secrecy. Even our hypothesized Year one deployment program entails 4000 flights at unusually high altitudes by airliner-sized aircraft in multiple flight corridors in both hemispheres. This is far too much aviation activity to remain undetected, and once detected, such a program could be deterred.

Wake Smith, Study Co-Author and Lecturer, Yale College

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.