Pulling Energy Out of Thin Air: The Sky is the Limit for Hydrogen-Based Clean Energy

Finding ways to produce clean energy and sources that generate green electricity tend to be complex, long-winded, and generally not as easy as simply pulling energy out of thin air. Yet, a group of researchers in Australia has demonstrated just that after discovering an enzyme that can quite literally convert air into energy.

Pulling Energy Out of Thin Air: The Sky is the Limit for Hydrogen-Based Clean Energy

Image Credit: Kay Cee Lens and Footages/Shutterstock.com

The team, led by Greening and his colleagues Dr. Rhys Grinter and Ph.D. student Ashleigh Kropp at Monash, recently published their findings in the journal Nature, describing how the enzyme, dubbed ‘Huc,’ is able to convert hydrogen gas into an electrical current.

While certain soil-based bacteria are known to convert hydrogen into energy, how this process works was not completely understood. That was until the Monash team discovered Huc.

Using bacteria found in certain soils, the team was able to produce the Huc enzyme that consumes hydrogen.

We’ve known for some time that bacteria can use the trace hydrogen in the air as a source of energy to help them grow and survive, including in Antarctic soils, volcanic craters, and the deep ocean… But we didn’t know how they did this, until now.

Professor Greening, Monash University Biomedicine Discovery Institute (BDI), Melbourne, Australia

Huc: Nature’s Very Own Battery

To take bacteria from special soil samples and develop the hydrogen-consuming enzyme Huc, the team applied a series of innovative techniques such as cryo-EM imaging advanced microscopy to expose “the molecular blueprint of atmospheric hydrogen oxidation.”

Using cryo-EM imaging to observe the atomic structure and electrical pathways, the team also applied protein film electrochemistry to show how the enzyme, when purified, is able to create electricity from minute hydrogen concentrations.

Each test was conducted at ambient conditions (room temperature and pressure), ensuring results reflected real-world application potential.

In addition to its ability to produce an electrical current from ambient air, the fact that the enzyme is robust and stable makes it particularly promising.

Huc can also be stored for prolonged periods of time, meaning it truly can be considered nature’s battery.

It is astonishingly stable. It is possible to freeze the enzyme or heat it to 80 degrees celsius, and it retains its power to generate energy… This reflects that this enzyme helps bacteria to survive in the most extreme environments.

Ashleigh Kropp, Ph.D. Student, Monash University

After extracting the Huc enzyme from Mycobacterium smegmatis, the team also discovered that the enzyme was capable of producing an electrical current from minute amounts of hydrogen, even at less than atmospheric concentrations.

Huc is extraordinarily efficient. Unlike all other known enzymes and chemical catalysts, it even consumes hydrogen below atmospheric levels – as little as 0.00005% of the air we breathe.

Dr. Rhys Grinter, Monash University

Clean Energy For a Cleaner Future

The Huc-producing bacteria are abundant and can even be grown in relatively large quantities, which makes the enzyme sustainable. According to Dr. Grinter, one of the primary objectives for ensuring clean energy for a cleaner future is to scale up Huc production.

Once we produce Huc in sufficient quantities, the sky is quite literally the limit for using it to produce clean energy.

Dr. Rhys Grinter, Monash University

If scale-up is successful, the team believes that this discovery could pave the way for the development of sophisticated devices with catalysts that oxidize H2 in ambient air, resulting in the self-sufficient generation of electricity.

While there is still a long way to go before even considering the possibility of supporting an entire city or national grid, the hope is that the long-term impact of this cutting-edge enzyme could alleviate stresses on national grids if the theoretical framework can be adopted into practical applications.

This is particularly promising and relevant today as governments and policymakers look to smart, clean energy solutions to address the climate crisis. Being able to pluck energy out of the air using Huc could potentially be a game changer when it comes to combatting climate change.

References and Further Reading

Grinter, R. et al. (2023) “Structural basis for bacterial energy extraction from atmospheric hydrogen,” Nature, 615(7952), pp. 541–547. Available at: https://doi.org/10.1038/s41586-023-05781-7

Scientists discover an enzyme that turns air into electricity, providing a new clean source of energy (2023) Monash Biomedicine Discovery Institute. Available at: https://www.monash.edu/discovery-institute/news-and-events/news/2023-articles/scientists-discover-an-enzyme-that-turns-air-into-electricity-providing-a-new-clean-source-of-energy

Disclaimer: The views expressed here are those of the author expressed in their private capacity and do not necessarily represent the views of AZoM.com Limited T/A AZoNetwork the owner and operator of this website. This disclaimer forms part of the Terms and conditions of use of this website.

David J. Cross

Written by

David J. Cross

David is an academic researcher and interdisciplinary artist. David's current research explores how science and technology, particularly the internet and artificial intelligence, can be put into practice to influence a new shift towards utopianism and the reemergent theory of the commons.


Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Cross, David. (2023, May 15). Pulling Energy Out of Thin Air: The Sky is the Limit for Hydrogen-Based Clean Energy. AZoCleantech. Retrieved on April 18, 2024 from https://www.azocleantech.com/news.aspx?newsID=33264.

  • MLA

    Cross, David. "Pulling Energy Out of Thin Air: The Sky is the Limit for Hydrogen-Based Clean Energy". AZoCleantech. 18 April 2024. <https://www.azocleantech.com/news.aspx?newsID=33264>.

  • Chicago

    Cross, David. "Pulling Energy Out of Thin Air: The Sky is the Limit for Hydrogen-Based Clean Energy". AZoCleantech. https://www.azocleantech.com/news.aspx?newsID=33264. (accessed April 18, 2024).

  • Harvard

    Cross, David. 2023. Pulling Energy Out of Thin Air: The Sky is the Limit for Hydrogen-Based Clean Energy. AZoCleantech, viewed 18 April 2024, https://www.azocleantech.com/news.aspx?newsID=33264.

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.