Posted in | News | Green Energy

New Nickel-Based Hydrogen Energy Carrier Can Store Hydrogen at Room Temperature

In the continued effort to move humanity away from fossil fuels and towards more environmentally friendly energy sources, researchers in Japan have developed a new material capable storing hydrogen energy in a more efficient and cheaper manner. The new hydrogen energy carrier can even store said energy for up to three months at room temperature. Moreover, since the material is nickel based, its cost is relatively cheap. The results were reported in Chemistry-A European Journal.

As humanity combats the ongoing climate crisis, one avenue researchers focus on is the transition into alternative sources of energy such as hydrogen. For several decades now Kyushu University has been investigating ways to more efficiently use and store hydrogen energy in the effort to realize a carbon neutral society.

"We have been working on developing new materials that can store and transport hydrogen energy," explains Professor Seiji Ogo of Kyushu University's International Institute for Carbon-Neutral Energy Research who led the research team. "Transporting it in its gaseous state requires significant energy. An alternative way of storing and transporting it would be to 'split-up' the hydrogen atoms into its base components, electrons and protons."

Many candidates have been considered as possible hydrogen energy carries such as ammonia, formic acid, and metal hydrides. However, the final energy carrier had not yet been established.

"So, we looked to nature for hints. There are a series of enzymes called hydrogenases that catalyze hydrogen into protons and electrons and can store that energy for later use, even at room temperature," continues Ogo. "By studying these enzymes our team was able to develop a new compound that does exactly that."

Not only was their new compound able to extract and store electrons at room temperature, further investigations showed that it can be its own catalyst to extract said electron, something that had not been possible with previous hydrogen energy carriers. The team also showed that the energy could be stored for up the three months.

Ogo also highlights the fact that the compound uses an inexpensive element: nickel. Until now, similar catalysts have used expensive metals like platinum, rhodium, or iridium. Now that nickel is a viable option for hydrogen energy storage, it can potentially reduce the cost of future compounds.

The team intends to collaborate with the industrial sector to transfer their new findings into more practical applications.

"We would also like to work on improving storage time and efficiency as well as investigate the viability of cheaper metals for such compounds," concludes Ogo. "Hopefully our findings will contribute to the goal of decarbonization so that we can build a greener and environmentally friendly future."

Source: https://kyushu-u.ac.jp/en/

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit
Azthena logo

AZoM.com powered by Azthena AI

Your AI Assistant finding answers from trusted AZoM content

Azthena logo with the word Azthena

Your AI Powered Scientific Assistant

Hi, I'm Azthena, you can trust me to find commercial scientific answers from AZoNetwork.com.

A few things you need to know before we start. Please read and accept to continue.

  • Use of “Azthena” is subject to the terms and conditions of use as set out by OpenAI.
  • Content provided on any AZoNetwork sites are subject to the site Terms & Conditions and Privacy Policy.
  • Large Language Models can make mistakes. Consider checking important information.

Great. Ask your question.

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.