Editorial Feature

What are Hydroelectric Dams?

Image Credit:Shutterstock/constantineandrosoff

A dam is any retaining structure, built across a river to stop or regulate its flow, and to raise the water level. Once a dam is built, water accumulates behind it to form a lake or dam reservoir. Thus it also includes containment structures for a large or small body of impounded water.

While dams are built to stop flooding and facilitate shipping, they may also be intended to generate electricity, and these are called hydroelectric dams. Such a structure is an essential part of a hydroelectric project.


Dam building is a hard and skilled job which begins with diverting the flow of the water temporarily. Following this, the area of the river bed which acts as the site for the foundation is prepared for construction, which involves ensuring that the rocky or sedimentary bed is strong enough to support the dam. The area on either side may also be strengthened. Following this a concrete block formation is built up. Once it is high enough, the water is allowed to flow in under strict control with careful monitoring. Other operational structures are finally added.

How it Works

Dams are the high-visibility part of a hydroelectric system, storing water at a height. When this water is released it flows down by gravity, and the potential energy is converted to kinetic energy. The height of the water level and the rate of flow of water decide the electricity output. The water flow is regulated by a gate or shutter which in turn is determined by the demand for power. The water flows down a series of channels or penstocks which guide and regulate the steepness of the fall, so as to optimize the efficiency of the dam.

The water finally passes through a hydraulic turbine and then into a tailrace, or exit stream, at the bottom of the dam, to rejoin the river.

Hydroelectric power is generated by the controlled flow of water through the turbine, a device that has a shaft connected to a generator that contains metal coils surrounded by magnets. As the water spins the turbine shaft, the magnets revolve around the metal coils, leading to electromagnetic induction, a phenomenon which generates electric power. In this way potential energy in the stored water is converted to kinetic energy as it flows down the penstock, and then into mechanical energy in the rotating turbine shaft, which in turn is converted to electrical energy.

Energy demands vary over the day. One advantage of hydroelectric plants is that they can vary their output to cater to peak power demands over short periods by the incorporation of pumped storage. The water which flows through the turbine is pumped into a higher storage pool located above the turbine, using excess power generated during the period of low consumer demand for power. At peak power demand this is released into the lower stream again to generate more electricity. In this way the reservoir behaves as a type of battery.


Hydroelectric plants can be put into operation quickly. Their power output is easily adjusted. Their operation remains efficient whether for a short or long period. Construction costs are low for small or medium-sized dams compared with other hydropower plants. A dam produces electricity without burning fossil fuels, and is thus considered a source of clean energy.


Hydroelectric dams come in a range of sizes:

  • Large - A dam which has a capacity of over 30 MW is a large project.
  • Small - A hydroelectric dam with a capacity of 10 MW or less.
  • Micro - A microhydroelectric dam generates up to 100 KW of power, such as for a single home, a ranch or a village.


Dams do produce some negative environmental impact. For instance, many species of fish cannot migrate for spawning purposes once their rivers are blocked by dams. In the USA alone, some salmon populations have come down to a couple of million from over 15 million following dam construction.

Dams and reservoirs also cause the natural temperature, the chemical composition, the type of flow and the silt loads in the river water to change, which affects the life in the river and its banks.

Dam reservoirs spread over hundreds or millions of hectares of agricultural land or land that has been settled on by a large and productive population, or archeological sites.

The human cost of dam building includes these physical changes, resettlement, and other far-reaching consequences.

The concrete and other materials used in dam construction are products of fossil fuel burning, but this one-time environmental cost is thought to be offset by the availability of clean power over a long period of 50 to 100 years.

Sometimes reservoirs serve as a source of greenhouse gases such as carbon dioxide and methane, which can have significant impact due to the large amount produced. However, scientists have developed means to use this methane to produce more electricity, which can enhance the power output while minimizing the environmental cost.


Disclaimer: The views expressed here are those of the author expressed in their private capacity and do not necessarily represent the views of AZoM.com Limited T/A AZoNetwork the owner and operator of this website. This disclaimer forms part of the Terms and conditions of use of this website.

Dr. Liji Thomas

Written by

Dr. Liji Thomas

Dr. Liji Thomas is an OB-GYN, who graduated from the Government Medical College, University of Calicut, Kerala, in 2001. Liji practiced as a full-time consultant in obstetrics/gynecology in a private hospital for a few years following her graduation. She has counseled hundreds of patients facing issues from pregnancy-related problems and infertility, and has been in charge of over 2,000 deliveries, striving always to achieve a normal delivery rather than operative.


Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Thomas, Liji. (2019, January 08). What are Hydroelectric Dams?. AZoCleantech. Retrieved on April 18, 2024 from https://www.azocleantech.com/article.aspx?ArticleID=737.

  • MLA

    Thomas, Liji. "What are Hydroelectric Dams?". AZoCleantech. 18 April 2024. <https://www.azocleantech.com/article.aspx?ArticleID=737>.

  • Chicago

    Thomas, Liji. "What are Hydroelectric Dams?". AZoCleantech. https://www.azocleantech.com/article.aspx?ArticleID=737. (accessed April 18, 2024).

  • Harvard

    Thomas, Liji. 2019. What are Hydroelectric Dams?. AZoCleantech, viewed 18 April 2024, https://www.azocleantech.com/article.aspx?ArticleID=737.

Tell Us What You Think

Do you have a review, update or anything you would like to add to this article?

Leave your feedback
Your comment type

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.