Posted in | Electric Vehicles

New Report on Technology Trends and Commercialization Prospects for Lithium-Air Batteries

Research and Markets has announced the addition of the "Lithium-Air Batteries: Technology Trends and Commercialization Prospects" report to their offering.

Electric vehicles are facing numerous technological challenges to replace gasoline internal combustion engine-powered cars. One of the biggest problems is low energy density of currently available li-ion batteries, which allows a short driving range of 150 km/charge. To boost full-scale development of the EV market, replacing current internal combustion engine cars, it is necessary to develop EVs with a similar single charge range of more than 500km with internal combustion engine cars.

According to NEDO (Japan), the energy density limit of li-ion secondary batteries is expected to be up to 250 Wh/kg. To develop EVs with the 500km range, which is considered as a prerequisite for growth of the EV market, it is required to develop a new type of battery that has energy density of 700 Wh/kg or more. Among several candidate technologies, metal-air batteries such as lithium-air and zinc-air batteries are considered as the most promising.

The biggest advantage of metal-air batteries is very high theoretical energy density in spite of using oxygen as Natures inexhaustible source as well as eco-friendly characteristics. Comparing various metal-air batteries based on electric charge/discharge and other electro-chemical characteristics, lithium-air and zinc-air batteries are recognized as the most likely candidates for next-generation secondary batteries for EV applications. Especially, lithium-air batteries show a similar level of energy density (11,140 Wh/kg) with gasoline (13,000 Wh/kg), and this is also the highest level among metal-air batteries. These potentialities have directed many researchers to focus on lithium-air batteries rather than zinc-air batteries since the mid-2000s.

Although it is forecasted that lithium-air batteries are far away from commercialization due to many issues to be overcome, it is a very challenging field requiring knowledge and expertise of researchers in a variety of areas. Currently many global leaders such as IBM, Toyota, and Samsung are continuously entering the R&D race with increasing investment, and these aggressive R&D activities based on technological achievements in the fields of li-ion and fuel batteries are expected to contribute to solving the technological challenge earlier, and accelerating commercialization.

This report examines the most noteworthy post-LiB technology, namely lithium-air batteries, in terms of technological issues, elemental technologies, technology development trends, and patent trends.

The strong point of this report is the up-to-date technology development trend in the field of lithium-air batteries including:

  • Analysis of development projects and roadmaps for next-generation secondary battery technologies in each country
  • technological issues and elemental technologies of lithium-air batteries
  • Patent trends of metal-air and lithium-air batteries
  • Analysis of development status of various lithium-air battery companies and research institutes in different countries
  • Prospect of future applications and commercialization of lithium-air batteries.

Companies Mentioned

  • AIST
  • Argonne National Laboratory (ANL)
  • Fudan University
  • Hanyang University
  • IBM
  • Korea Institute of Energy Research
  • Kyushu University
  • Massachusetts Institute of Technology (MIT)
  • Mie University
  • Newcastle University
  • Pacific Northwest National Laboratory (PNNL)
  • Polyplus Battery Company
  • Samsung Elecronics (Samsung Advanced Institute Technology)
  • Seoul National University
  • Toyota
  • US Army Research Lab.
  • University of Dayton Research Institute
  • University of Rome La Sapienza
  • University of St. Andrews
  • University of Texas at Austin
  • University of Waterloo

For more information visit http://www.researchandmarkets.com/research/w2pshb/lithiumair

Source: http://www.researchandmarkets.com/

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Research and Markets. (2019, March 01). New Report on Technology Trends and Commercialization Prospects for Lithium-Air Batteries. AZoCleantech. Retrieved on February 27, 2020 from https://www.azocleantech.com/news.aspx?newsID=18654.

  • MLA

    Research and Markets. "New Report on Technology Trends and Commercialization Prospects for Lithium-Air Batteries". AZoCleantech. 27 February 2020. <https://www.azocleantech.com/news.aspx?newsID=18654>.

  • Chicago

    Research and Markets. "New Report on Technology Trends and Commercialization Prospects for Lithium-Air Batteries". AZoCleantech. https://www.azocleantech.com/news.aspx?newsID=18654. (accessed February 27, 2020).

  • Harvard

    Research and Markets. 2019. New Report on Technology Trends and Commercialization Prospects for Lithium-Air Batteries. AZoCleantech, viewed 27 February 2020, https://www.azocleantech.com/news.aspx?newsID=18654.

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Submit