Posted in | News | Climate Change

Study Shows Proglacial Lakes Cause Glacier Ice to Recede Faster

According to a new study, meltwater lakes that develop at glacier margins cause ice to ebb relatively further and quicker than glaciers that end on land.

Image Credit: Dr Jenna Sutherland.

However, current ice loss models do not reflect the impacts of these glacial lakes, warned the authors of the study. Therefore, estimates of the recession rates as well as the loss of ice mass from lake-terminating glaciers in the days to come might be underestimated.

Several mountain glaciers end in these lakes, which developed as meltwater became stuck behind the ridges of glacier debris. They are called proglacial lakes.

Globally, climate change has increased the rate of glacier melt and this has consequently resulted in a significant rise in the number and size of proglacial lakes. However, the impacts of proglacial lakes on the speed of deglaciation and also on glacier behavior were poorly understood before.

Under the guidance of the University of Leeds, an international research team has now measured the impact of proglacial lakes on mountain glaciers through computer simulations, for the first time.

The team discovered that the existence of a proglacial lake causes a glacier to subside further by more than four times and speed up the ice flow by up to eight times in comparison to the same glacier that terminates on land under the same climatic condition.

Recently published in the Geophysical Research Letters journal, the findings demonstrate that a land-terminating glacier took 1000 years to yield to the same proportion of recession as a lake-terminating glacier experienced in 100 years.

Dr Jenna Sutherland, the study’s lead author, performed this study while she was a PhD candidate in the School of Geography at the University of Leeds.

An ice cube in a bowl of water is going to melt much more quickly than an ice cube sitting on a table, and the effect proglacial lakes have on glacier ice is roughly the same.

Dr Jenna Sutherland, Study Lead Author, University of Leeds

The simulations show that the influence of a proglacial lake on a glacier predominantly takes place over decades to centuries rather than over millennia, meaning the glacier recedes much faster than it ever could from climatic changes alone,” Dr Sutherland added.

Our findings suggest that simulations of past, contemporary or future glaciers ignore the effects of ice-contact lakes and will likely mis-represent the timing and rate of recession, especially the changes to the timing and rate that will occur once a proglacial lake forms.

Dr Jonathan Carrivick, Study Co-Author and Senior Lecturer in Geomorphology, University of Leeds

Dr Carrivick continued, “This effects need to be included in all future models and simulations if we are to have an accurate global picture of glacial ice loss.”

Using the BISICLES ice-flow model, the researchers investigated the impacts of a proglacial on the Pukaki Glacier located in New Zealand, at the time of recession from the end of the previous ice age.

While this study focussed on New Zealand, proglacial lakes are prevalent during glacial retreat worldwide and this paper should therefore be of global interest and importance.

James Shulmeister, Study Co-Author and Professor, University of Canterbury

He continued, “This study is also critical because the timing of ice retreat is often used to determine the synchrony or lack thereof of in climate events globally. Major inferences have been made about the roles of phenomena like oceanic circulation in affecting the global climate system from glacial retreat timings.”

If the timings are wrong, the relationship between these processes may need to be re-examined,” Shulmeister concluded.

Journal Reference:

Sutherland, J. L., et al. (2020) Proglacial Lakes Control Glacier Geometry and Behavior During Recession. Geophysical Research Letters.


Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Azthena logo powered by Azthena AI

Your AI Assistant finding answers from trusted AZoM content

Your AI Powered Scientific Assistant

Hi, I'm Azthena, you can trust me to find commercial scientific answers from

A few things you need to know before we start. Please read and accept to continue.

  • Use of “Azthena” is subject to the terms and conditions of use as set out by OpenAI.
  • Content provided on any AZoNetwork sites are subject to the site Terms & Conditions and Privacy Policy.
  • Large Language Models can make mistakes. Consider checking important information.

Great. Ask your question.

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.