Posted in | News | Energy

Surrey Scientists Support International Effort to Develop Safe, Low-Carbon Electricity Through Nuclear Fusion

Materials engineers at the University of Surrey and the UK Atomic Energy Authority are supporting an international effort to develop a new, economically viable and safe source of low carbon electricity through nuclear fusion.

The Surrey research team will be using their expertise to upgrade stress measurement techniques that can allow scientists to map the residual pressure within a volume of steel, rather than in single points. The Surrey team's new approach will be used to prove whether welds are safe and effective to use in future fusion energy plants.

Dr Tan Sui, Senior Lecturer in Materials Engineering at the University of Surrey, who led the research, said:

"Developing techniques and introducing new approaches to UK research is essential if we're to move towards energy generated through fusion, which could be a key part of the world's long-term energy needs by the second half of this century. Our next step is to process the data acquired through these processes into a simulation model which will enable us to accurately predict the residual stress on EUROFER 97 steel joints after welding."

Dr Yiqiang Wang, Senior Materials Engineer at the UK Atomic Energy Authority, said:

''We are now entering the engineering design phase for the next generation of nuclear fusion power plants, building upon decades of research at UKAEA and the wider international fusion community. Our team will tackle engineering challenges to accelerate fusion demonstrators. This collaboration between the University of Surrey, UKAEA, EUROfusion, the Science and Technology Facilities Council's ISIS Neutron and Muon Source and industry will continue to demonstrate the efficiencies offered by cross-sector and international partnerships in accelerating the development of fusion energy technologies."

EUROFER 97™ steel (a European reference steel invented in 1997) has been specially developed as a structural material candidate for components of future fusion powerplants. To be effective, it will need to withstand temperatures of 550°C and high levels of irradiation without degrading. The Surrey team is focusing on investigating the integrity and longevity of the steel welds, which would be required in the construction of the fusion reaction chamber.

The University of Surrey is working with the UK Atomic Energy Authority's fusion research centre in Culham and STFC's ISIS Neutron and Muon Source in Oxfordshire, a world-leading centre for research in the physical and life sciences which produces beams of neutrons and muons that allow scientists to study materials at the atomic level. The Surrey team also worked closely with Czech company TESCAN, a global supplier of scientific instruments which designs and manufactures electron and ion-beam microscopes and instruments.

Read the two research papers: Journal of Materials Science & Technology and Science Advances. https://doi.org/10.1016/j.jmst.2021.12.004 and https://doi.org/10.1126/sciadv.abl4592

Source: https://www.surrey.ac.uk/

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit
Azthena logo

AZoM.com powered by Azthena AI

Your AI Assistant finding answers from trusted AZoM content

Azthena logo with the word Azthena

Your AI Powered Scientific Assistant

Hi, I'm Azthena, you can trust me to find commercial scientific answers from AZoNetwork.com.

A few things you need to know before we start. Please read and accept to continue.

  • Use of “Azthena” is subject to the terms and conditions of use as set out by OpenAI.
  • Content provided on any AZoNetwork sites are subject to the site Terms & Conditions and Privacy Policy.
  • Large Language Models can make mistakes. Consider checking important information.

Great. Ask your question.

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.