Study Reveals Soil Temperature Changes Can Have Unexpected Consequences for Lake Ecology

Rising soil temperatures significantly affect autumn leaves and consequently the food web, appearance and biochemical makeup of the lakes and ponds those leaves fall into, a Dartmouth College-led study finds.

A Dartmouth College-led study finds plankton food webs consisting of zooplankton, algae and bacteria in lakes and ponds are impacted by autumn leaves and rising soil temperatures caused by climate change. (Credit: Famartin)

The study is one of the first to rigorously explore climate warming's impact on "ecological subsidies," or the exchange of nutrients and organisms between ecosystems. "Our findings could have profound consequences for conceptualizing how climate warming impacts linkages between terrestrial and aquatic ecosystems," says the study's lead author Samuel Fey, a visiting scholar at Dartmouth and a postdoctoral fellow at Yale University.

The findings appear today online in the journal Oikos. A PDF is available on request.

The researchers collected maple leaves during autumn from experimental forest plots where the soil had been warmed or left untouched. They added the leaves to experimental freshwater enclosures containing plankton food webs consisting of zooplankton, algae and bacteria, thus creating "no leaf," "ambient leaf" and "heated leaf" conditions. They then monitored the physical, chemical and biological responses in these artificial ponds until the enclosures froze six weeks later.

The results showed that soil warming caused a two-fold decrease in the leaves' phosphorus concentrations, and that the addition of these "warmed" leaves to the ponds decreased the water's phosphorus, dissolved organic carbon and density of bacteria, but improved the water's clarity and caused a three-fold increase in the density of cladoceran zooplankton, commonly called water fleas. Zooplankton provide a crucial source of food to many larger aquatic organisms such as fish.

"Virtually nothing is known about how climate change may alter ecological subsidies," Fey says. "Our results suggest that changes in soil temperature can have unexpected consequences for lake ecology and that predicting the consequences of climate change will require research across ecosystem boundaries."

Source: http://www.dartmouth.edu

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.