The new instrument circumvents this problem by developing a gentler technique that uses a low-power, light-emitting diode to measure water's effect on scattering and absorbtion by wildfire smoke and hence its growth.
By sampling the smoke and scanning the humidity from dry to very humid conditions while measuring its optical properties, the instrument mimicks what happens during cloud and rain formation, and the effects of water are measured immediately. Laboratory experiments show for the first time that water coating the black soot-like material can enhance the light absorption by up to 20 percent.
The instrument will next be tested and the water effects probed in smoke from wildfires sampled at Los Alamos' Center for Aerosol-gas Forensics (CAFÉ). Los Alamos will be deploying instruments to Houston next year as part of the DOE Atmospheric Radiation Measurement (ARM) facility's Tracking Aerosol Convection Interactions Experiment (TRACER) campaign. Los Alamos's effort, called TRACER-CAT, will measure how water uptake by soot interacts with deep convective storms.
Dubey worked with Christian M. Carrico of the New Mexico Institute of Mining and Technology on a research team that included scientists from Los Alamos, New Mexico Tech, and Michigan Technological University and Aerodyne Research, Inc. The novel findings of experiments were performed by the Los Alamos Director's postdoctoral fellow Kyle Gorkowski and Department of Energy graduate fellow Tyler Capek.