Posted in | News | Pollution | Global Warming

New Instrument Helps Better Understand the Scale and Long-Term Impact of Fires

A first-of-its-kind instrument that samples smoke from megafires and scans humidity will help researchers better understand the scale and long-term impact of fires--specifically how far and high the smoke will travel; when and where it will rain; and whether the wet smoke will warm the climate by absorbing sunlight.

"Smoke containing soot and other toxic particles from megafires can travel thousands of kilometers at high altitudes where winds are fast and air is dry," said Manvendra Dubey, a Los Alamos National Laboratory atmospheric scientist and co-author on a paper published last week in Aerosol Science and Technology.

"These smoke-filled clouds can absorb much more sunlight than dry soot--but this effect on light absorption has been difficult to measure because laser-based techniques heat the particles and evaporate the water, which corrupt observations."

The new instrument circumvents this problem by developing a gentler technique that uses a low-power, light-emitting diode to measure water's effect on scattering and absorbtion by wildfire smoke and hence its growth.

By sampling the smoke and scanning the humidity from dry to very humid conditions while measuring its optical properties, the instrument mimicks what happens during cloud and rain formation, and the effects of water are measured immediately. Laboratory experiments show for the first time that water coating the black soot-like material can enhance the light absorption by up to 20 percent.

The instrument will next be tested and the water effects probed in smoke from wildfires sampled at Los Alamos' Center for Aerosol-gas Forensics (CAFÉ). Los Alamos will be deploying instruments to Houston next year as part of the DOE Atmospheric Radiation Measurement (ARM) facility's Tracking Aerosol Convection Interactions Experiment (TRACER) campaign. Los Alamos's effort, called TRACER-CAT, will measure how water uptake by soot interacts with deep convective storms.

Dubey worked with Christian M. Carrico of the New Mexico Institute of Mining and Technology on a research team that included scientists from Los Alamos, New Mexico Tech, and Michigan Technological University and Aerodyne Research, Inc. The novel findings of experiments were performed by the Los Alamos Director's postdoctoral fellow Kyle Gorkowski and Department of Energy graduate fellow Tyler Capek.

Source: https://www.lanl.gov/

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.