Benefits of Biochar May Be Somewhat Overstated

There has been greatly increasing attention given to the potential of 'biochar', or charcoal made from biological tissues (e.g., wood) to serve as a long term sink of carbon in the soil. This is because charcoal is carbon-rich and breaks down extremely slowly, persisting in soil for thousands of years. This has led to the suggestion being seriously considered by policy makers worldwide that biochar could be produced in large quantities and stored in soils. This would in turn increase ecosystem carbon sequestration, and thereby counteract human induced increases in carbon-based greenhouse gases and help combat global warming.

However, a new study by Professors David Wardle, Marie-Charlotte Nilsson and Olle Zackrisson at SLU, the Swedish University of Agricultural Sciences, in Umeå, scheduled to appear in this Friday’s issue of the prestigious journal Science, suggests that these supposed benefits of biochar may be somewhat overstated. In their study, charcoal was prepared and mixed with forest soil, and left in the soil in each of three contrasting forest stands in northern Sweden for ten years.

They found that when charcoal was mixed into humus, there was a substantial increase in soil microorganisms (bacteria and fungi). These microbes carry out decomposition of organic matter (carbon) in the soil, and consistent with this, they found that charcoal caused greatly increased losses of native soil organic matter, and soil carbon, for each of the three forest stands. Much of this lost soil carbon would be released as carbon dioxide, a greenhouse gas. Therefore, while it is true that charcoal represents a long term sink of carbon because of its persistence, this effect is at least partially offset by the capacity of charcoal to greatly promote the loss of that carbon already present in the soil.

The study finds that the supposed benefits of biochar in increasing ecosystem carbon storage may be overstated, at least for boreal forest soils. The effect of biochar on the loss of carbon already in the soil needs to be better understood before it can be effectively applied as a tool to mitigate human-induced increases in carbon-based greenhouse gases.

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.